Bulletin of Electrical Engineering and Informatics
Vol 13, No 6: December 2024

Improving Arabic handwritten text recognition through transfer learning with convolutional neural network-based models

Lamtougui, Hicham (Unknown)
El Moubtahij, Hicham (Unknown)
Fouadi, Hassan (Unknown)
Satori, Khalid (Unknown)



Article Info

Publish Date
01 Dec 2024

Abstract

Arabic handwritten text recognition is a complex and challenging research domain. This study proposes an offline Arabic handwritten word recognition system based on transfer learning. The system exploits four pre-trained convolutional neural network (CNN) architectures, namely VGG16, ResNet50, AlexNet, and InceptionV3. In addition, a specialized image recognition model derived from the ImageNet dataset is incorporated. A combination strategy is designed to combine transfer learning with specific fine-tuning techniques, aiming to improve recognition accuracy. The study is conducted on the IFN/ENIT dataset, which includes images of Tunisian City and village names. The results show that the proposed system achieves a recognition accuracy of 94.73%, which is significantly higher than the accuracy rates achieved by previous approaches. These results suggest that the proposed system is a promising approach for Arabic handwritten text recognition.

Copyrights © 2024






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...