Bulletin of Electrical Engineering and Informatics
Vol 13, No 1: February 2024

A multimodal biometric database and case study for face recognition based deep learning

Kadhim, Ola Najah (Unknown)
Hasan Abdulameer, Mohammed (Unknown)



Article Info

Publish Date
01 Feb 2024

Abstract

Recently, multimodal biometric systems have garnered a lot of interest for the identification of human identity. The accessibility of the database is one of the contributing elements that impact biometric recognition systems. In their studies, the majority of researchers concentrate on unimodal databases. There was a need to compile a fresh, realistic multimodal biometric database, nonetheless, because there were so few comparable multimodal biometric databases that were publically accessible. This study introduces the MULBv1 multimodal biometric database, which contains homologous biometric traits. The MULBv1 database includes 20 images of each person's face in various poses, facial emotions, and accessories, 20 images of their right hand from various angles, and 20 images of their right iris from various lighting positions. The database contains real multimodal data from 174 people, and all biometrics were accurately collected using the micro camera of the iPhone 14 Pro Max. A face recognition technique is also suggested as a case study using the gathered facial features. In the case study, the deep convolutional neural network (CNN) was used, and the findings were positive. Through several trials, the accuracy was (97.41%).

Copyrights © 2024






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...