International Journal of Renewable Energy Development
Vol 13, No 5 (2024): September 2024

Optimizing aeration rates via bio-methane potential test for enhanced biodrying efficiency of refuse-derived fuel-3

Wahyanti, Eka (Unknown)
Towprayoon, Sirintornthep (Unknown)
Sutthasil, Noppharit (Unknown)
Patumsawad, Suthum (Unknown)
Wangyao, Komsilp (Unknown)



Article Info

Publish Date
01 Sep 2024

Abstract

Aeration forms a critical part of the biodrying of refuse-derived fuel-3 (RDF-3) and significantly affects the fuel’s energy potential. Understanding the organic content (OC) of RDF-3 is crucial for determining the optimal aeration strategy. In this study, we conducted a bio-methane potential (BMP) test to estimate the OC by observing the conversion of organic matter into methane (CH₄) and carbon dioxide (CO₂). The observation of BMP was conducted using anaerobic digestion approach where substrate and inoculum are important parameters considered for the success of this test. Various ratios substrate-to-inoculum (S/I) were explored to assess their impact on biogas production, our research involved testing four S/I ratios (0.25, 0.5, 1.0, and 1.5) focusing on identifying the optimal aeration strategy. Based on stoichiometric calculations, the sample’s biogas yield per gram volatile solid indicates RDF-3’s OC is 1.5%. This OC value played a role in establishing the appropriate aeration rate (AR) for the biodrying process, which was determined to be 0.6 m³/kg.day, indicating the action of effective microbial degradation processes. Ensuring the correct AR is vital for maximizing the energy potential of RDF-3. Implementing optimized aeration rates based on the BMP test in waste management practices can significantly improve RDF-3 biodrying efficiency. This approach enhances RDF quality, reduces moisture, increases calorific value, and minimizes greenhouse gas emissions, leading to more sustainable and efficient waste-to-energy conversion.

Copyrights © 2024






Journal Info

Abbrev

ijred

Publisher

Subject

Control & Systems Engineering Earth & Planetary Sciences Electrical & Electronics Engineering Energy Engineering

Description

The International Journal of Renewable Energy Development - (Int. J. Renew. Energy Dev.; p-ISSN: 2252-4940; e-ISSN:2716-4519) is an open access and peer-reviewed journal co-published by Center of Biomass and Renewable Energy (CBIORE) that aims to promote renewable energy researches and developments, ...