Computer Science (CO-SCIENCE)
Vol. 4 No. 2 (2024): Juli 2024

Klasifikasi Perilaku Pemain Game Online Menggunakan Naïve Bayes Berbasis Particle Swarm Optimization

Heristian, Sujiliani (Unknown)
Anwar, Rian Septian (Unknown)
Kautsar, Hanggoro Aji Al (Unknown)



Article Info

Publish Date
31 Jul 2024

Abstract

Much research has been conducted to understand player behavior as a result of the rapid growth of online gaming. In this research, we use the Naive Bayes method optimized using Particle Swarm Optimization (PSO) to analyze the behavior classification of online game players. The classification accuracy value of the baseline method is 75.09% and the Area Under the Curve (AUC) value is 0.798. We use PSO-based optimization on Naïve Bayes to improve model performance. The results showed that the combination of Naïve Bayes and PSO increased classification accuracy to 95.28% with an AUC value of 0.990. This is a major advance that shows that combining the PSO algorithm with Naive Bayes can enable better classification of online game player behavior. These findings will make a significant contribution to the process of making plans that can improve the gaming experience.

Copyrights © 2024






Journal Info

Abbrev

co-science

Publisher

Subject

Computer Science & IT

Description

Computer Science (CO-SCIENCE) pertama kali publikasi tahun 2021 dengan nomor ISSN (Elektonik): 2774-9711 yang diterbitkan oleh Lembaga Ilmu Pengetahuan Indonesia (LIPI). Computer Science (CO-SCIENCE) adalah jurnal yang diterbitkan oleh Program Studi Ilmu Komputer Universitas Bina Sarana Informatika. ...