Let G be a graph with vertex set V(G) and diameter diam(G). Let D ⊆ {0, 1, 2, 3, …, diam(G)} and φ : V(G)→{1, 2, 3, …, |V(G)|} be a bijection. The graph G is called D-distance magic, if  s ∈ ND(t)φ(s) is a constant for any vertex t ∈ V(G). The graph G is called (α, β)-D-distance antimagic, if { s ∈ ND(t)φ(s):t ∈ V(G)} is a set {α, α + β, α + 2β, …, α + (|V(G)| − 1)β}. In this paper, we study D-distance (anti)magic labelings of shadow graphs for D = {1}, {0, 1}, {2}, and {0, 2}.
                        
                        
                        
                        
                            
                                Copyrights © 2024