Journal of Computer Science and Engineering (JCSE)
Vol 5, No 2: August (2024)

Accuracy Assessment of Monthly Rainfall Predictions using Seasonal ARIMA and Long Short-Term Memory (LSTM)

Akbar, Ahmad Aldizar (Unknown)
Darmawan, Yahya (Unknown)
Wibowo, Arief (Unknown)
Rahmat, Hayatul Khairul (Unknown)



Article Info

Publish Date
30 Aug 2024

Abstract

Hydro meteorological disasters are common in Indonesia. Rainfall predictions can help mitigate the impact of these disasters. This research aims to compare the accuracy of monthly rainfall prediction models using Seasonal Autoregressive Integrated Moving Average (SARIMA) and Long Short-Term Memory (LSTM) methods. The input data consists of monthly rainfall records from four locations: Sampali, Kualanamu, Belawan, and Tuntungan, located around Medan, North Sumatra. The dataset spans from 2000 to 2020, with training data from 2000 to 2018 and test data from 2019 to 2020. The accuracy assessment reveals that Belawan has the largest RMSE values for both models, measuring 27.68 mm for LSTM and 28.36 mm for SARIMA. Belawan records the highest MAE values, with LSTM and SARIMA yielding 5.65 mm and 5.79 mm, respectively. SARIMA models effectively capture general trends and seasonality in linear time series data with clear patterns but struggle with extreme changes or sharp fluctuations due to their reliance on linear relationships. In contrast, LSTMs are effective at modeling complex, non-linear relationships, making them suitable for capturing general trends, seasonal patterns, and more complicated variations in the data. Understanding the characteristics of the data is crucial before applying SARIMA or LSTM models.

Copyrights © 2024






Journal Info

Abbrev

JCSE

Publisher

Subject

Computer Science & IT

Description

Computer Architecture, Processor design, operating systems, high-performance computing, parallel processing, computer networks, embedded systems, theory of computation, design and analysis of algorithms, data structures and database systems, theory of computation, design and analysis of algorithms, ...