CESS (Journal of Computer Engineering, System and Science)
Vol 9, No 1 (2024): January 2024

Analisis Data Penjualan Menggunakan Algoritma K-Means Clustering Pada Toko Daun Indah di Shopee

Dermawan, Hibrizi Dzaky (Unknown)
Kurniawan, Rudi (Unknown)
Wijaya, Yudhistira Arie (Unknown)



Article Info

Publish Date
12 Jan 2024

Abstract

Toko Daun Indah adalah sebuah usaha yang menjual berbagai pilihan produk kecantikan, tidak semua produk tersebut dimanati pelanggan. Namun data penjualan di Toko Daun Indah belum dikelola dengan baik untuk menentukan produk mana yang paling diminati dan mana yang kurang diminati pelanggan. Akibatnya, data tersebut berfungsi sebagai dokumen arsip dan belum dimanfaatkan untuk strategi pemasaran. Sehingga perlu diterapkannya teknik data mining dalam mengembangkan strategi pemasaran penjualan. Tujuan penelitian adalah menganalisis data penjualan untuk mengetahui cluster terbaik berdasarkan Davies Bouldin Index, iterasi, dan measure type yang menghasilkan K Optimal. Metode yang digunakan adalah Cross-Industry Standard Process Model for Data Mining dengan algoritma K-Means Clustering untuk mengelompokkan data penjualan berdasarkan karakteristiknya, karena mudah dalam penerapannya, dan relatif cepat. Berdasarkan hasil pengelompokan data penjualan produk dengan metode K-Means diperoleh parameter yang optimal. Dengan melakukan uji dengan jumlah cluster (k= 2-25), hasil metode K-Means menunjukkan nilai DBI paling optimal sebesar -0.149 dengan 2 cluster pada iterasi ke-1 sebanyak 30 iterasi, Measure type Mixed Measures.  

Copyrights © 2024






Journal Info

Abbrev

cess

Publisher

Subject

Computer Science & IT

Description

CESS (Journal of Computer Engineering, System and Science) contains articles on research results and conceptual studies in the fields of informatics engineering, computer science and information systems. The main topics published include: 1. Information security 2. Computer security 3. Networking & ...