Permasalahan dalam penelitian ini adalah tingginya jumlah variabel yang saling berkorelasi, sehingga menyulitkan pemahaman terhadap struktur data. Tujuan penelitian ini untuk mereduksi dimensi variabel yang saling berkorelasi dan memperoleh pemahaman yang lebih baik terhadap struktur data. Data yang digunakan terdiri dari 768 sampel dengan 8 variabel bebas dan 1 variabel terikat pada Data Diabetes. Langkah-langkah analisis meliputi penentuan jumlah komponen utama, uji Bartlett dan uji Keiser-Meyer-Olkin (KMO) untuk memastikan kecocokan data, perhitungan koefisien komponen utama, serta visualisasi grafik AKU. Hasil analisis menunjukkan bahwa terdapat 5 komponen utama yang mampu menangkap lebih dari 80% keragaman data, serta hubungan yang beragam antar variabel yang diamati. The problem in this research is the high number of variables that weaken each other, making it difficult to understand the data structure. The aim of this research is to reduce the dimensions of mutually burdening variables and gain a better understanding of the data structure. The data used consists of 768 samples with 8 independent variables and 1 dependent variable in Diabetes Data. The analysis steps include determining the number of principal components, Bartlett's test and Keiser-Meyer-Olkin (KMO) test to ensure data suitability, performance of principal component coefficients, and visualization of the AKU graph. The results of the analysis show that there are 5 main components that are able to capture more than 80% of the diversity of the data, as well as various relationships between the observed variables.
Copyrights © 2024