Jurnal Nasional Teknologi Informasi dan Aplikasinya
Vol 2 No 4 (2024): JNATIA Vol. 2, No. 4, Agustus 2024

Klasifikasi Ngengat dan Kupu-Kupu Menggunakan Metode GLCM dan Support Vector Machine

Mardana, I Dewa Made (Unknown)
Astuti, Luh Gede (Unknown)



Article Info

Publish Date
01 Aug 2024

Abstract

Butterflies and moths are two types of insects that share similarities in their appearance and physical characteristics. Both insects exhibit a variety of colors, patterns, and body shapes that are often difficult to distinguish. This research aims to classify butterflies and moths using feature extraction from the Gray-Level Co-occurrence Matrix. The feature extraction process involves extracting values such as correlation, homogeneity, contrast, and energy from angles of 0°, 45°, 90°, and 135° in each butterfly and moth image. Furthermore, the Support Vector Machine method is used for classification. The research results indicate that using feature extraction from the Gray-Level Co-occurrence Matrix and the Support Vector Machine method can achieve an accuracy of 68.11%, with precision, recall, and F1-Score values of 70.0%, 68.0%, and 68.0%, respectively. Keywords: Classification, Gray-Level Co-occurrence Matrix, Feature extraction, Support Vector Machine, Butterflies, Moths

Copyrights © 2024






Journal Info

Abbrev

jnatia

Publisher

Subject

Computer Science & IT

Description

JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) merupakan jurnal yang berfokus pada teori, praktik dan metodologi seluruh aspek teknologi di bidang ilmu dan teknik komputer serta ide-ide produktif dan inovatif terkait teknologi baru dan sistem informasi. Jurnal ini memuat makalah ...