Jurnal Nasional Teknologi Informasi dan Aplikasinya
Vol 2 No 3 (2024): JNATIA Vol. 2, No. 3, Mei 2024

Klasifikasi Citra Elektrokardiogram untuk Deteksi Penyakit Jantung Menggunakan Metode GLCM dan SVM

Tamba, Andreas Panangian (Unknown)
Wibawa, I Gede Arta (Unknown)



Article Info

Publish Date
01 May 2024

Abstract

Heart disease is a major cause of death worldwide. Electrocardiogram (ECG) is a common method used to detect heart abnormalities. Analyzing ECG signals requires expertise and can be time-consuming. This study investigated the use of machine learning to classify ECG images for heart disease detection. The proposed method utilizes Gray Level Co-occurrence Matrix (GLCM) for feature extraction such as Dissimilarity, contrast, energy, ASM, homogeneity and Correlation. Meanwhile using Support Vector Machine (SVM) for the classification. We achieved an accuracy of 99.61% using this approach. The results suggest that the combination of GLCM and SVM can be a valuable tool for ECG image classification and potentially aid in early and accurate diagnosis of heart disease. Keywords: Electrocardiography, Support Vector Machine, Gray Level Co-Occurrence Matrix, Classification, Myocardial Infarction

Copyrights © 2024






Journal Info

Abbrev

jnatia

Publisher

Subject

Computer Science & IT

Description

JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya) merupakan jurnal yang berfokus pada teori, praktik dan metodologi seluruh aspek teknologi di bidang ilmu dan teknik komputer serta ide-ide produktif dan inovatif terkait teknologi baru dan sistem informasi. Jurnal ini memuat makalah ...