PREDATECS: Public Research Journal of Engineering, Data Technology and Computer Science
Vol. 2 No. 1: PREDATECS July 2024

Application of Recurrent Neural Network Bi-Long Short-Term Memory, Gated Recurrent Unit and Bi-Gated Recurrent Unit for Forecasting Rupiah Against Dollar (USD) Exchange Rate

Fayyad, Muhammad Fauzi (Unknown)
Kurniawan, Viki (Unknown)
Anugrah, Muhammad Ridho (Unknown)
Estanto, Baihaqi Hilmi (Unknown)
Bilal, Tasnim (Unknown)



Article Info

Publish Date
21 Apr 2024

Abstract

Foreign exchange rates have a crucial role in a country's economic development, influencing long-term investment decisions. This research aims to forecast the exchange rate of Rupiah to the United States Dollar (USD) by using deep learning models of Recurrent Neural Network (RNN) architecture, especially Bi-Long Short-Term Memory (Bi-LSTM), Gated Recurrent Unit (GRU), and Bi-Gated Recurrent Unit (Bi-GRU). Historical daily exchange rate data from January 1, 2013 to November 3, 2023, obtained from Yahoo Finance, was used as the dataset. The model training and evaluation process was performed based on various parameters such as optimizer, batch size, and time step. The best model was identified by minimizing the Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). Among the models tested, the GRU model with Nadam optimizer, batch size 16, and timestep 30 showed the best performance, with MSE 3741.6999, RMSE 61.1694, MAE 45.6246, and MAPE 0.3054%. The forecast results indicate a strengthening trend of the Rupiah exchange rate against the USD in the next 30 days, which has the potential to be taken into consideration in making investment decisions and shows promising economic growth prospects for Indonesia.

Copyrights © 2024






Journal Info

Abbrev

predatecs

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management Electrical & Electronics Engineering Engineering

Description

PREDATECS: Public Research Journal of Engineering, Data Technology and Computer Science is a scientific journal published by the Institute of Research and Publication Indonesian (IRPI) or Institut Riset dan Publikasi Indonesia (IRPI). The main focus of PREDATECS Journal is Engineering, Data ...