Journal of Computing Theories and Applications
Vol. 1 No. 3 (2024): JCTA 1(3) 2024

Music-Genre Classification using Bidirectional Long Short-Term Memory and Mel-Frequency Cepstral Coefficients

Wijaya, Nantalira Niar (Unknown)
Setiadi, De Rosal Ignatius Moses (Unknown)
Muslikh, Ahmad Rofiqul (Unknown)



Article Info

Publish Date
09 Jan 2024

Abstract

Music genre classification is one part of the music recommendation process, which is a challenging job. This research proposes the classification of music genres using Bidirectional Long Short-Term Memory (BiLSTM) and Mel-Frequency Cepstral Coefficients (MFCC) extraction features. This method was tested on the GTZAN and ISMIR2004 datasets, specifically on the IS-MIR2004 dataset, a duration cutting operation was carried out, which was only taken from seconds 31 to 60 so that it had the same duration as GTZAN, namely 30 seconds. Preprocessing operations by removing silent parts and stretching are also performed at the preprocessing stage to obtain normalized input. Based on the test results, the performance of the proposed method is able to produce accuracy on testing data of 93.10% for GTZAN and 93.69% for the ISMIR2004 dataset.

Copyrights © 2024






Journal Info

Abbrev

jcta

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Journal of Computing Theories and Applications (JCTA) is a refereed, international journal that covers all aspects of foundations, theories and the practical applications of computer science. FREE OF CHARGE for submission and publication. All accepted articles will be published online and accessed ...