Journal of Computing Theories and Applications
Vol. 2 No. 1 (2024): JCTA 2(1) 2024

Top-Heavy CapsNets Based on Spatiotemporal Non-Local for Action Recognition

Ha, Manh-Hung (Unknown)



Article Info

Publish Date
25 May 2024

Abstract

To effectively comprehend human actions, we have developed a Deep Neural Network (DNN) that utilizes inner spatiotemporal non-locality to capture meaningful semantic context for efficient action identification. This work introduces the Top-Heavy CapsNet as a novel approach for video analysis, incorporating a 3D Convolutional Neural Network (3DCNN) to apply the thematic actions of local classifiers for effective classification based on motion from the spatiotemporal context in videos. This DNN comprises multiple layers, including 3D Convolutional Neural Network (3DCNN), Spatial Depth-Based Non-Local (SBN) layer, and Deep Capsule (DCapsNet). Firstly, the 3DCNN extracts structured and semantic information from RGB and optical flow streams. Secondly, the SBN layer processes feature blocks with spatial depth to emphasize visually advantageous cues, potentially aiding in action differentiation. Finally, DCapsNet is more effective in exploiting vectorized prominent features to represent objects and various action features for the ultimate label determination. Experimental results demonstrate that the proposed DNN achieves an average accuracy of 97.6%, surpassing conventional DNNs on the traffic police dataset. Furthermore, the proposed DNN attains average accuracies of 98.3% and 80.7% on the UCF101 and HMDB51 datasets, respectively. This underscores the applicability of the proposed DNN for effectively recognizing diverse actions performed by subjects in videos.

Copyrights © 2024






Journal Info

Abbrev

jcta

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Journal of Computing Theories and Applications (JCTA) is a refereed, international journal that covers all aspects of foundations, theories and the practical applications of computer science. FREE OF CHARGE for submission and publication. All accepted articles will be published online and accessed ...