Journal of Applied Data Sciences
Vol 5, No 3: SEPTEMBER 2024

Utilizing Support Vector Machine and Dimensionality Reduction to Identify Student Learning Styles within the Felder-Silverman Model

Hananto, Andhika Rafi (Unknown)
Musdholifah, Aina (Unknown)
Wardoyo, Retantyo (Unknown)



Article Info

Publish Date
23 Sep 2024

Abstract

This research explores the impact of questionnaire structure on the accuracy of learning style classification, focusing on the optimization of the Felder-Silverman Learning Style Model (FSLSM) using advanced machine learning techniques. By employing Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE) for dimensionality reduction, the study identifies and retains the most informative variables from the original 44-question FSLSM instrument. These refined features are then processed through a Support Vector Machine (SVM) algorithm to evaluate classification performance across various core-to-secondary item ratios. Results indicate that the most optimal configuration—produced through the combined PCA-t-SNE reduction—achieved a peak accuracy of 89.54%, surpassing other configurations and highlighting the effectiveness of selective question modeling. This approach not only enhances prediction accuracy but also introduces a more efficient and streamlined FSLSM formula, reducing redundancy without compromising diagnostic precision. The study contributes to educational data mining by presenting a data-driven strategy for learning style assessment and offers practical implications for the development of adaptive, personalized learning systems grounded in statistically validated models.

Copyrights © 2024






Journal Info

Abbrev

JADS

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management

Description

One of the current hot topics in science is data: how can datasets be used in scientific and scholarly research in a more reliable, citable and accountable way? Data is of paramount importance to scientific progress, yet most research data remains private. Enhancing the transparency of the processes ...