Journal of Applied Data Sciences
Vol 5, No 3: SEPTEMBER 2024

Implementation of Scale-Invariant Feature Transform Convolutional Neural Network for Detecting Distracted Driver

Fhadilla, Nahdatul (Unknown)
Sulandari, Winita (Unknown)
Susanto, Irwan (Unknown)
Slamet, Isnandar (Unknown)
Sugiyanto, Sugiyanto (Unknown)
Subanti, Sri (Unknown)
Zukhronah, Etik (Unknown)
Pardede, Hilman Ferdinandus (Unknown)
Kadar, Jimmy Abdel (Unknown)



Article Info

Publish Date
16 Jul 2024

Abstract

A distraction while driving a vehicle may result in fatal consequences, namely accidents that may leave road users seriously injured or even dead. In order to mitigate this risk, it is imperative to establish a distracted driver detection system that is both precise and real-time. This research focuses on the application of artificial intelligence, with a particular emphasis on deep learning, which is achieved through the utilization of the Convolutional Neural Network (CNN) model. In order to enhance the detection of inattentive drivers and produce a more precise model, a scaleinvariant feature transform (SIFT)-CNN combination is proposed. The activities of the driver while operating a vehicle are categorized into ten categories in this study. One of these categories is considered a normal condition, while the remaining nine are classified as inattentive behaviors. This study implemented Adam optimization with 64 batches, a learning rate of 0.001, and epochs of 20, 25, 50, and 100. The proposed CNNSIFT model is capable of achieving superior performance in comparison to the solitary CNN model, as evidenced by the experimental results. The CNN-SIFT model has achieved 99% accuracy and a 0.05 loss when the hyperparameter configuration is optimized for 50 epochs. The analysis indicates that the accuracy of the features obtained from CNN-SIFT can be improved by approximately 1% compared with CNN to classify the type of driver distraction behavior. The model's reliability was further enhanced by its evaluation on test data, which resulted in high accuracy, precision, recall, and F1-score values. The model's ability to accurately identify driver behavior with a high degree of reliability is demonstrated by these results, which are a positive contribution to the improvement of road safety.

Copyrights © 2024






Journal Info

Abbrev

JADS

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management

Description

One of the current hot topics in science is data: how can datasets be used in scientific and scholarly research in a more reliable, citable and accountable way? Data is of paramount importance to scientific progress, yet most research data remains private. Enhancing the transparency of the processes ...