Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer
Vol. 8 No. 1 (2024)

Detection of Bias in Machine Learning Models for Predicting Deaths Caused by COVID-19

Zachra, Fatimatus (Unknown)
Basuki, Setio (Unknown)



Article Info

Publish Date
30 Jun 2024

Abstract

The COVID-19 pandemic has significantly impacted global health, resulting in numerous fatalities and presenting substantial challenges to national healthcare systems due to a sharp increase in cases. Key to managing this crisis is the rapid and accurate identification of COVID-19 infections, a task that can be enhanced with Machine Learning (ML) techniques. However, ML applications can also generate biased and potentially unfair outcomes for certain demographic groups. This paper introduces a ML model designed for detecting both COVID-19 cases and biases associated with specific patient attributes. The model employs Decision Tree and XGBoost algorithms for case detection, while bias analysis is performed using the DALEX library, which focuses on protected attributes such as age, gender, race, and ethnicity. DALEX works by creating an "explainer" object that represents the model, enabling exploration of the model's functions without requiring in-depth knowledge of its workings. This approach helps pinpoint influential attributes and uncover potential biases within the model. Model performance is assessed through accuracy metrics, with the Decision Tree algorithm achieving the highest accuracy at 99% following Bayesian hyperparameter optimization. However, high accuracy does not ensure fairness, as biases related to protected attributes may still persist.

Copyrights © 2024






Journal Info

Abbrev

eltikom

Publisher

Subject

Aerospace Engineering Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering

Description

We are the Editor of Jurnal ELTIKOM, invites Mr. / Ms Lecturer, researcher and practitioner to be able to publish your paper on topics covering Electrical Engineering, Electronics Engineering, Telecommunications Engineering, Computer Engineering, Information ...