Journal of Information Systems and Informatics
Vol 6 No 3 (2024): September

Utilizing IoT-Enhanced Multilayer Perceptron and Run Length Encoding for Classifying Plant Suitability Based on pH and Soil Humidity Parameters

Pratama, Yogi Tiara (Unknown)
Sukemi, Sukemi (Unknown)
Tutuko, Bambang (Unknown)



Article Info

Publish Date
26 Sep 2024

Abstract

This research proposes an IoT-based system for classifying plant suitability using pH data and soil humidity parameters. The system utilizes Run-Length Encoding (RLE) to compress sensor data, which is transmitted to a database server via the Esp8266 module. A Multilayer Perceptron (MLP) algorithm is employed to classify the data, achieving an accuracy of 0.82 with only two parameters. The classification results are displayed on a website, providing real-time recommendations for farmers. The system's performance is evaluated using a dataset from Kaggle. The Kaggle dataset contains 2200 instances for 22 different plants and the results show that the proposed system can effectively classify plant suitability based on environmental factors. This research contributes to the development of IoT-based recommendation systems for precision agriculture, and future studies can build upon this work to improve accuracy and quality.

Copyrights © 2024






Journal Info

Abbrev

isi

Publisher

Subject

Computer Science & IT

Description

Journal-ISI is a scientific article journal that is the result of ideas, great and original thoughts about the latest research and technological developments covering the fields of information systems, information technology, informatics engineering, and computer science, and industrial engineering ...