Jurnal Masyarakat Informatika
Vol 15, No 1 (2024): May 2024

Machine Learning untuk Prediksi Kegagalan Mesin dalam Predictive Maintenance System

Hafidhoh, Nisa'ul (Unknown)
Atmaja, Ardian Prima (Unknown)
Syaifuddiin, Gus Nanang (Unknown)
Sumafta, Ikhwan Baidlowi (Unknown)
Pratama, Salva Mahardhika (Unknown)
Khasanah, Hafsah Nur (Unknown)



Article Info

Publish Date
31 May 2024

Abstract

Dalam menghadapi Revolusi Industri 4.0, teknologi seperti Internet of Things, Big Data, dan Kecerdasan Buatan menjadi kunci dalam modernisasi industri. Pendekatan Machine Learning digunakan untuk memproses data multivariabel berdimensi tinggi dan mengekstrak hubungan tersembunyi dalam lingkungan industri yang kompleks. Machine Learning digunakan untuk mengklasifikasikan kegagalan mesin dalam membangun Predictive Maintenance System. Penelitian ini mengadopsi siklus CRISP-DM (Cross Industry Standard Process for Data Mining) yang terdiri dari tahap business understanding, data understanding, data preparation, modelling, evaluation dan deployment. Predictive Maintenance Dataset berupa data sintetis yang digunakan dalam penelitian ini mencerminkan situasi industri nyata terdiri dari 10.000 baris data dengan sepuluh fitur. Jenis kegagalan mesin diklasifikasikan menjadi Heat Dissipation Failure, Power Failure, Overstrain Failure, dan Tool Wear Failure. Exploratory Data Analysis dilakukan untuk mendapatkan ringkasan dan visualisasi data. Pendekatan machine learning menggunakan metode Logistic Regression dan hasil evaluasi model mencapai akurasi 96,87%, sesuai dengan kriteria sukses data. Hasil pemodelan machine learning yang dikembangkan kemudian diimplementasikan dalam aplikasi Predictive Maintenance System berbasis web untuk memudahkan pemantauan kondisi mesin dan prediksi kegagalan mesin oleh pengguna.              

Copyrights © 2024






Journal Info

Abbrev

jmasif

Publisher

Subject

Computer Science & IT

Description

JURNAL MASYARAKAT INFORMATIKA - JMASIF is a Journal published by the Department of Informatics, Universitas Diponegoro invites lecturers, researchers, students (Bachelor, Master, and Doctoral) as well as practitioners in the field of computer science and informatics to contribute to JMASIF in the ...