RESOLUSI : REKAYASA TEKNIK INFORMATIKA DAN INFORMASI
Vol. 4 No. 6 (2024): RESOLUSI July 2024

Clustering Loyalitas Pelanggan Menggunakan Algoritma K-Means Berbasis Web

Shafarina Aprilia, Diva (Unknown)
Sudriyanto (Unknown)
Moh Jasri (Unknown)



Article Info

Publish Date
31 Jul 2024

Abstract

Active customer engagement in transactions with the company significantly impacts profitability. Categorizing customer data into loyal and non-loyal segments is a common method to identify loyalty patterns. The results of this segmentation can guide companies in designing follow-up strategies, including tailored incentives based on customer loyalty levels. Implementing a web-based K-Means Clustering algorithm allows PT Bhara Utama's management to easily access customer segmentation results, speeding up data analysis and enhancing decision-making efficiency. The use of web technology also facilitates integration with existing information systems and provides more flexible access. An experiment conducted on 660 customer data resulted in three groups: 8 very loyal customers, 461 moderately loyal customers, and 191 non-loyal customers. Accuracy evaluation using the Davies-Bouldin Index (DBI) showed a value of 0.19, indicating high-quality clusters.

Copyrights © 2024






Journal Info

Abbrev

resolusi

Publisher

Subject

Computer Science & IT

Description

Resolusi : Rekayasa Teknik Informatika dan Informasi, membahas ilmu dibidang Informatika, Sistem Informasi, Manajemen Informatika, DSS, AI, ES, Jaringan, sebagai wadah dalam menuangkan hasil penelitian baik secara konseptual maupun teknis yang berkaitan dengan Teknologi Informatika dan Komputer. ...