The government is trying to increase corn yields to meet the Indonesian population's food needs and for export abroad. Some farmers have yet to gain experience with the types of diseases in corn, so they need tools or systems to guide and provide information to new farmers. Many previous studies have developed automatic systems to identify corn leaf diseases, with the goal of increasing corn crop production by early recognition and control. We propose a system for identifying types of corn leaf diseases using the CNN (Convolutional Neural Network) method to be more precise in recognizing corn diseases early on. The methods used in previous research mostly used deep learning with high accuracy results above 90%. CNN is one of the deep learning methods, so we use it to identify types of leaf diseases. Our data comes from Kaggle; we process it first. The Kaggle dataset has corn plants similar to those in Indonesia, so we use this data with identification classes (Blight, Common rust, Gray leaf spot, and Healthy). The training data is 2000 images with 500 images for each class, and the testing data is 120 images with 30 images for each class. The evaluation results show that the classification process using the CNN method has an accuracy of 84.5%. The results we produced for identifying types of corn leaf disease still lack accuracy in their prediction, indicating the need to improve the CNN architecture model.
Copyrights © 2024