JSAI (Journal Scientific and Applied Informatics)
Vol 7 No 2 (2024): Juni

Retinal Optical Coherence Tomography (OCT) Analysis for Retinal Damage Detection Using Machine Learning Methods

Anita Ratnasari (Unknown)



Article Info

Publish Date
07 Jun 2024

Abstract

This study attempts to use support vector machine and otsu thresholding as proposed algorithm models to classify Retinal optical coherence tomography (OCT) images. In this study, there are two types implemented in classifying retinal image datasets. The first scenario is to classify using the support vector machine algorithm without the otsu thresholding method and the second scenario is to classify using the support vector machine algorithm with the otsu thresholding method with various parameter values. Based on the experimental results, classification of retina image datasets using the support vector machine algorithm without the otsu thresholding method obtained an accuracy of 63.00% while classification using the support vector machine algorithm with the otsu thresholding method with parameter values (0, 255), (50, 255), (100, 255), (150, 255) obtained an accuracy of 59.30%.

Copyrights © 2024






Journal Info

Abbrev

JSAI

Publisher

Subject

Computer Science & IT

Description

Jurnal terbitan dibawah fakultas teknik universitas muhammadiyah bengkulu. Pada jurnal ini akan membahas tema tentag Mobile, Animasi, Computer Vision, dan Networking yang merupakan jurnal berbasis science pada informatika, beserta penelitian yang berkaitan dengan implementasi metode dan atau ...