METHOMIKA: Jurnal Manajemen Informatika & Komputerisasi Akuntansi
Vol. 8 No. 1 (2024): METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi

PENERAPAN ALGORITMA DECISION TREE, SVM, NAÏVE BAYES DALAM DETEKSI STUNTING PADA BALITA

Hanif, Kharis Hudaiby (Unknown)
Muntiari, Novita Ranti (Unknown)



Article Info

Publish Date
30 Apr 2024

Abstract

Stunting is a toddler's body condition that is short according to body length according to age (PB/U), ≤ 2 Standard Deviations (SD), with a z-score between -3 standard deviations (SD). Where checking the stunting status of toddlers takes quite a long time because it is done manually and is also prone to errors. Therefore, it is hoped that a system can classify toddler examination data quickly and accurately to predict children's stunting status. Building a system that uses an algorithm to classify the stunting status of toddlers usingdecision tree, naïve bayes, andSVM. With what level of accuracy is the best of the 3 algorithms? Results from testing with 30% testing data and 70% training data using an algorithmdecision tree, naïve bayes, and SVM. Accuracy level test resultsdecision tree by 99%,naïve bayes of 48%, and SVM of 95%. So, the algorithm with the highest level of accuracy isdecision tree amounts to 99%. Wallet hiredecision tree better for detecting stunting in toddlers

Copyrights © 2024






Journal Info

Abbrev

methomika

Publisher

Subject

Computer Science & IT Economics, Econometrics & Finance

Description

Sistem Informasi Sistem Informasi Manajemen Sistem Informasi Akuntansi Manajemen Basis Data Pengembangan Aplikasi Web dan Mobile Sistem Pendukung Keputusan Desain Grafis dan Multimedia Audit Sistem Informasi Topik-topik lain yang Relevan dengan bidang ilmu Manajemen Informatika Topik-topik lain yang ...