Fraud detection in financial transactions presents a significant challenge due to the evolving tactics of fraudsters and the inherent imbalance in datasets, where fraudulent activities are rare compared to legitimate transactions. This study proposes a Hybrid Model utilizing a stacking ensemble technique that combines multiple machines learning algorithms, including Random Forest, Gradient Boosting, SVM, LightGBM, and XGBoost, to enhance the accuracy of fraud detection systems. The Hybrid Model is evaluated against traditional machine learning models using a comprehensive cross-validation approach, with results indicating a near-perfect accuracy of 99.99%, outperforming all individual models. The study also examines the trade-offs associated with the Hybrid Model, including increased computational demands and reduced interpretability, highlighting the need for careful consideration when deploying such models in real-world scenarios. Despite these challenges, the Hybrid Model's ability to significantly reduce both false positives and false negatives makes it a powerful tool for financial institutions aiming to mitigate the risks associated with fraudulent activities. In conclusion, the findings demonstrate the effectiveness of hybrid ensemble methods in fraud detection, providing a robust solution that balances the complexities of real-world applications with the need for high accuracy. The research underscores the potential of advanced machine learning techniques in enhancing the security and reliability of financial transactions, offering valuable insights for the development of future fraud detection systems.
Copyrights © 2024