Anemia is a prevalent and potentially serious medical condition characterized by a deficiency in the number or quality of red blood cells. Accurate classification of anemia types is crucial for ensuring appropriate treatment, as different types of anemia require distinct therapeutic approaches. However, the classification of anemia presents specific challenges due to the complexity of the condition, the variability in CBC data, and the need to differentiate between multiple anemia types that may present with overlapping symptoms. In this study, we explore the application of hybrid machine learning models to classify anemia types using Complete Blood Count (CBC) data. We evaluated the performance of various models, including DecisionTree, RandomForest, XGBoost, LightGBM, CatBoost, and ensemble methods such as Stacking and Voting. The ensemble models, particularly Stacking and Voting, demonstrated superior performance with balanced accuracy reaching 0.9976 and F1 scores of 0.9964, significantly outperforming individual classifiers. These results underscore the efficacy of ensemble techniques in handling the complex and imbalanced datasets commonly encountered in medical diagnostics. Despite their high accuracy, we identified challenges related to model interpretability, computational demands, and data quality. The complexity and resource requirements of these models may limit their practical application in resource-constrained environments. This study provides a comprehensive analysis of the trade-offs between model complexity, accuracy, and interpretability, offering valuable insights for the deployment of machine learning models in clinical settings. Our findings highlight the potential of hybrid models to improve anemia diagnosis, suggesting their integration into healthcare systems could enhance diagnostic accuracy and patient outcomes. Future work will focus on expanding the dataset, refining model interpretability, and addressing ethical considerations in the use of AI in healthcare.
Copyrights © 2024