JATI (Jurnal Mahasiswa Teknik Informatika)
Vol. 7 No. 4 (2023): JATI Vol. 7 No. 4

KLASIFIKASI DATA GEMPA BUMI DI PULAU JAWA MENGGUNAKAN ALGORITMA EXTREME GRADIENT BOOSTING

Kharis Pratama, Adam (Unknown)
Ashaury, Herdi (Unknown)
Rakhmat Umbara, Fajri (Unknown)



Article Info

Publish Date
06 Jan 2024

Abstract

Gempa bumi adalah fenomena yang terjadi akibat pergerakan lempeng tektonik dan dapat memiliki dampak merusak. Kedalaman hiposentrum memiliki peran penting dalam menentukan karakteristik gempa. Proses klasifikasi kedalaman hiposentrum penting untuk memahami potensi gempa di wilayah Indonesia. Dalam menghadapi data gempa yang besar dan kompleks, serta tantangan dalam mengidentifikasi pola dari kedalaman hiposentrum, terdapat permasalahan dalam proses klasifikasi. Penelitian ini memfokuskan pada penerapan algoritma Extreme Gradient Boosting (XGBoost) dalam mengklasifikasikan data gempa bumi berdasarkan kedalaman hiposentrum di Pulau Jawa. Beberapa penelitian sebelumnya menggunakan XGBoost untuk klasifikasi menunjukkan kemampuan algoritma ini dalam berbagai konteks. Hasil eksperimen menunjukkan bahwa model XGBoost dengan penyetelan parameter menghasilkan akurasi 99.58%. Keputusan ini didukung oleh kemampuan model untuk mengatasi masalah ketidakseimbangan data dan menghasilkan prediksi akurat. Meskipun akurasi sempurna belum tercapai, hasil ini realistis dan memiliki potensi untuk mengklasifikasikan data gempa dengan akurasi yang tinggi.

Copyrights © 2023






Journal Info

Abbrev

jati

Publisher

Subject

Computer Science & IT

Description

Adalah jurnal mahasiswa yang diterbitkan oleh Teknik Informatika Institut Teknologi Nasional Malang, sebagai media publikasi hasil Skripsi Mahasiswa Teknik Informatika ke khalayak luas, diterbitkan secara berkala 6 kali setahun pada bulan Februari, April, Juni, Agustus, Oktober, ...