JATI (Jurnal Mahasiswa Teknik Informatika)
Vol. 8 No. 3 (2024): JATI Vol. 8 No. 3

KLASIFIKASI PENYAKIT GINJAL MENGGUNAKAN ALGORITMA HIBRIDA CNN-ELM

Hasby Bik, Ahmad (Unknown)
Tri Anggraeny , Fetty (Unknown)
Yulia Puspaningrum, Eva (Unknown)



Article Info

Publish Date
14 Jun 2024

Abstract

Penyakit ginjal adalah masalah serius yang memerlukan deteksi dini. Studi ini menjelajahi model hybrid CNN-ELM untuk mengklasifikasikan gambar CT penyakit ginjal, menyoroti pentingnya pemilihan fungsi aktivasi. Dengan fokus pada gambar CT, pendekatan ini menjanjikan diagnosis yang akurat dengan akurasi tinggi, mendukung praktik klinis sehari-hari. Melalui percobaan jumlah filter dalam CNN dan neuron tersembunyi dalam ELM, performa model dapat ditingkatkan. ReLU mencapai akurasi tertinggi (0.9963), sedangkan Tanh (0.8419). Hasil ini memberikan panduan penting untuk mengoptimalkan konfigurasi model dalam mendiagnosis penyakit ginjal secara efisien. Dengan akurasi yang memuaskan, pendekatan ini berpotensi menjadi alat bantu berharga dalam praktik medis, membantu praktisi dalam membuat keputusan yang lebih baik

Copyrights © 2024






Journal Info

Abbrev

jati

Publisher

Subject

Computer Science & IT

Description

Adalah jurnal mahasiswa yang diterbitkan oleh Teknik Informatika Institut Teknologi Nasional Malang, sebagai media publikasi hasil Skripsi Mahasiswa Teknik Informatika ke khalayak luas, diterbitkan secara berkala 6 kali setahun pada bulan Februari, April, Juni, Agustus, Oktober, ...