International Journal of Robotics and Control Systems
Vol 4, No 3 (2024)

Multi-Objective Particle Swarm Optimization for Enhancing Chiller Plant Efficiency and Energy Savings

Bhardwaj, Yogesh (Unknown)
Shah, Owais Ahmad (Unknown)
Kumar, Rakesh (Unknown)



Article Info

Publish Date
30 Jul 2024

Abstract

This study aims to enhance operational efficiency in chiller plants by implementing the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm. The primary objectives are to simultaneously reduce energy consumption and increase cooling efficiency, addressing the challenges posed by variable environmental and operational conditions. Employing the MOPSO algorithm, this research conducts a detailed analysis using real-time environmental data and operational parameters. This approach facilitates a dynamic adaptation to changes in ambient temperature and electricity pricing, ensuring that the algorithm's application remains effective under fluctuating conditions. The application of MOPSO has resulted in significant reductions in energy use and improvements in cooling efficiency. These results demonstrate the algorithm's capacity to optimize chiller plant operations dynamically, adapting to changes in environmental conditions and operational demands. The study finds that MOPSO's adaptability to dynamic operational conditions enables robust energy management in chiller plants. This adaptability is crucial for maintaining efficiency and cost-effectiveness in industrial applications, especially under varying environmental impacts. The paper contributes to the field by enhancing the understanding of how advanced optimization algorithms like MOPSO can be effectively integrated into energy management systems for chiller plants. A novel aspect of this research is the integration of real-time data analytics into the optimization process, which significantly improves the sustainability and operational efficiency of HVAC systems. Furthermore, the study outlines the potential for similar research applications in large-scale HVAC systems, where such algorithmic improvements can extend practical benefits. The findings underscore the importance of considering a broad range of environmental and operational factors in the optimization process and suggest that MOPSO's flexibility and robustness make it a valuable tool for achieving sustainable and cost-effective energy management in industrial settings.

Copyrights © 2024






Journal Info

Abbrev

IJRCS

Publisher

Subject

Control & Systems Engineering Electrical & Electronics Engineering

Description

International Journal of Robotics and Control Systems is open access and peer-reviewed international journal that invited academicians (students and lecturers), researchers, scientists, and engineers to exchange and disseminate their work, development, and contribution in the area of robotics and ...