Science in Information Technology Letters
Vol 5, No 1 (2024): May 2024

Betta fish classification using transfer learning and fine-tuning of CNN models

Munif, Rihwan (Unknown)
Prahara, Adhi (Unknown)



Article Info

Publish Date
17 Apr 2024

Abstract

Betta fish, known as freshwater fighters, are in demand because of their beauty and characteristics. These betta fish such as Crowntail, Halfmoon, Doubletail, Spadetail, Plakat, Veiltail, Paradise, and Rosetail are hard to recognize without knowledge about them. Therefore, transfer learning of Convolutional Neural Network models was proposed to classify the betta fish from the image. The transfer learning process used a pre-trained model from ImageNet of VGG16, MobileNet, and InceptionV3 and fine-tuned the models on the betta fish dataset. The models were trained on 461 images, validated with 154 images, and tested on 156 images. The result shows that the InceptionV3 model excels with 0.94 accuracies compared to VGG16 and MobileNet which acquire 0.93 and 0.92 accuracy respectively. With good accuracy, the trained model can be used in betta fish recognition applications to help people easily identify betta fish from the image.

Copyrights © 2024






Journal Info

Abbrev

sitech

Publisher

Subject

Computer Science & IT

Description

Science in Information Technology Letters (SITech) aims to keep abreast of the current development and innovation in the area of Science in Information Technology as well as providing an engaging platform for scientists and engineers throughout the world to share research results in related ...