INTI Nusa Mandiri
Vol. 19 No. 1 (2024): INTI Periode Agustus 2024

PERBANDINGAN PENERAPAN ALGORITMA DEEP LEARNING DALAM PREDIKSI HARGA EMAS

Julianto, Muhammad Fahmi (Unknown)
Iqbal, Muhammad (Unknown)
Hidayat, Wahyutama Fitri (Unknown)
Malau, Yesni (Unknown)



Article Info

Publish Date
02 Aug 2024

Abstract

Digital investment is trending because advancements in information technology make access easy through smartphones. Various digital investment instruments attract much interest from the public. Post COVID-19 pandemic, the economic impact of the pandemic is still felt until the end of 2022, requiring people to be smart in managing their finances. Gold investment is considered profitable due to its high value and tendency to increase, unlike the fluctuating stocks. Although easily accessible, investments carry risks, so investors must have sufficient knowledge to maximize profits. This research aims to predict gold prices using several deep learning models, namely Artificial Neural Network (ANN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM). The dataset used was taken from the Kaggle website, which includes historical gold price data. In this research, various deep learning models were applied and evaluated to determine the best model for predicting gold prices. The results show that the CNN model with Adam optimization and Mean Squared Error (MSE) loss function provides the best performance. The CNN model achieved the lowest Mean Absolute Error (MAE) of 0.004848717761305338, the lowest MSE of 4.3451079619612133, and the lowest Root Mean Squared Error (RMSE) of 0.006591743291392053. These results indicate that the CNN model is more effective in predicting gold prices compared to the ANN, RNN, and LSTM models on the used dataset.

Copyrights © 2024






Journal Info

Abbrev

inti

Publisher

Subject

Computer Science & IT

Description

The INTI Nusa Mandiri Journal is intended as a media for scientific studies on the results of research, thought and analysis-critical studies on the issues of Computer Science, Information Systems and Information Technology, both nationally and internationally. The scientific article in question is ...