Model Klasifikasi banyak digunakan dalam rangka menganalisis dan menemukan jenis kategori kelas data. Salah satu bentuk pemanfaatan metode klasifikasi adalah mengklasifikasikan hasil penilaian pengukuran kinerja karyawan. Metode klasifikasi yang umum dan dapat digunakan antara lain adalah metode Decision Tree, Naive Bayes, -NN dan Random Forest. Namun tidak semua metode dapat menghasilkan performa yang baik dalam penilaian kinerja Karyawan. Sehingga perlu dilakukan optimasi misalnya melalui penggunaan seleksi fitur. Beberapa penelitian telah dilakukan optimasi metode klasifikasi melalui penggunaan metode seleksi fitur dalam penilaian kinerja karyawan. Namun optimasi ini dipengaruhi oleh karakteristik data yang digunakan. Tidak semua teknik seleksi fitur sesuai untuk meningkatkan hasil klasifikasi dan jumlah penggunaan fitur dapat mempengaruhi performa model klasifikasi. Penelitian ini mengusulkan teknik analisis penggunaan jumlah fitur pada data kinerja dosen melalui metode seleksi fitur ANOVA untuk meningkatkan performa model klasifikasi metode -NN. Tujuannya adalah untuk mendapatkan jumlah fitur yang terbaik dalam peningkatan performa metode klasifikasi -NN. Hasil penelitian menunjukkan bahwa jumlah fitur terbaik dari metode ANOVA adalah sejumlah 5 fitur dengan hasil akurasi klasifikasi -NN sebesar 0.839, precision 0.8323, recall 0.839 dan F1-score 0.833. Teknik analisis ini dapat digunakan oleh sebuah perusahaan dalam mengutamakan fitur terbaik dalam menilai kualitas kinerja karyawannya.
Copyrights © 2023