Journal La Multiapp
Vol. 5 No. 3 (2024): Journal La Multiapp

Measurement of Centroid Distance in Determining Stunting Clusters

Lubis, Muhammad Taufik Hakim (Unknown)
Hasibuan, Muhammad Siddik (Unknown)



Article Info

Publish Date
05 Aug 2024

Abstract

This study evaluates the effectiveness of distance measurement methods in the K-Means clustering algorithm for determining stunting clusters by comparing Euclidean and Manhattan distances. The goal is to obtain optimal cluster centroids and the closest distances within each cluster. The study uses a sample of 552 records with 3 attributes. The process begins with applying the K-Means algorithm, followed by distance measurement using Euclidean and Manhattan methods. Iterations are performed until optimal results are achieved. Evaluation is conducted using Sum of Squared Errors (SSE) to assess the total error within clusters and Mean Squared Error (MSE) to calculate the average nearest distance within clusters. The results indicate that both SSE and MSE methods are effective in identifying cluster quality and provide insights into the accuracy and effectiveness of Euclidean and Manhattan methods in clustering.

Copyrights © 2024






Journal Info

Abbrev

JournalLaMultiapp

Publisher

Subject

Aerospace Engineering Automotive Engineering Chemical Engineering, Chemistry & Bioengineering Civil Engineering, Building, Construction & Architecture Engineering

Description

International Journal La Multiapp peer reviewed, open access Academic and Research Journal which publishes Original Research Articles and Review Article, editorial comments etc in all fields of Engineering, Technology, Applied Sciences including Engineering, Technology, Computer Sciences, Architect, ...