An improved indirect vector control (IVC) method for a wind energy conversion system (WECS) is presented in this research. Field-oriented control or indirect vector control as it is sometimes called is a very important element of contemporary WECS that employs DFIGs. This control strategy is pivotal for achieving high performance and efficiency of DFIG-based wind turbines because it offers direct control on the torque and power ratings of the generator. A doubly fed induction generator (DFIG) is used by the WECS to inject power to the grid. An adaptive network-based fuzzy inference system (ANFIS), which is proposed to replace traditional methods like linear PI controllers, is the basis for this IVC. In this paper we chose ANFIS controller over traditional linear Proportional-Integral (PI) controllers due to its ability to adapt and learn from the system, leading to improved performance. The rotor voltage is controlled by the proposed IVC in order to regulate the exchanged active and reactive power between the stator and the grid. In order to verify the proposed control in terms of performance and robustness, a comparative analysis between the proposed ANFIS and linear PI controllers for the WECS-DFIG system is performed by a simulation study in a MATLAB/Simulink environment. This analysis covers both the transient and steady states of operation. As a result, the proposed ANFIS controller shows improved efficiency and robustness compared to the linear PI controllers. This superiority stems from its ability to integrate the flexibility and effectiveness inherent in diverse artificial intelligence controllers, specifically the synergistic use of Neural Network (NN) and Fuzzy Logic (FL) algorithms. The ANFIS controller's adaptability to diverse operating conditions and its capability to learn and optimize its performance play pivotal roles in enhancing its control capabilities within the WECS-DFIG system.
Copyrights © 2024