Merkurius: Jurnal Riset Sistem Informasi dan Teknik Informatika
Vol. 2 No. 6 (2024): November: Merkurius : Jurnal Riset Sistem Informasi dan Teknik Informatika

Membangun Model Prediksi Churn Pelanggan yang Akurat: Studi Kasus tentang TELCO Company

Andy Hermawan (Universitas Indraprasta PGRI)
Nila Rusiardi Jayanti (Universitas Indraprasta PGRI Jakarta)
Zia Tabaruk (Universitas Bhayangkara Jakarta Raya)
Faizal Lutfi Yoga Triadi (Universitas Diponogoro)
Aji Saputra (Universitas Khairun)
M.Rahmat Hidayat Syachrudin (Purwadhika Digital Technology School Jakarta)



Article Info

Publish Date
07 Oct 2024

Abstract

Customer churn prediction models have become an important tool in the telecommunications industry to reduce churn rates and improve customer retention. This research focuses on building an accurate customer churn prediction model using machine learning algorithms for TELCO Company. By applying diverse feature engineering techniques and prediction models such as RandomForestClassifier, DecisionTreeClassifier, and XGBoost, this study showcases a significant improvement in prediction accuracy compared to previously implemented rule-based methods. The findings of this research allow TELCO Company to identify high-risk customers more effectively and implement targeted retention strategies. Results show that the resulting model can identify customers at risk of churn more effectively, enabling more targeted retention actions..

Copyrights © 2024






Journal Info

Abbrev

Merkurius

Publisher

Subject

Computer Science & IT

Description

Merkurius : Jurnal Riset Sistem Informasi dan Teknik Informatika memuat naskah hasil-hasil penelitian di bidang Sistem Informasi dan Teknik ...