Jurnal Ilmu Komputer
Vol 4, No 2 (2024): JUNE 2024

Comparative Analysis of CNN-LSTM and LSTM Models for Cyberbullying Detection with Increasing Dataset Sizes

Handayani, Tri Pratiwi (Unknown)
Abas, Mohamad Ilyas (Unknown)



Article Info

Publish Date
15 Jul 2024

Abstract

This study compares the performance of two deep learning models, CNN-LSTM and LSTM, for identifying cyberbullying in social media text. Three distinct dataset sizes are used for our evaluation and comparison: 1,000, 5,000, and 10,000 samples. The results indicate that the CNN-LSTM model outperforms the LSTM-only model (Ablation model) for the largest dataset size, exhibiting substantial enhancements in accuracy, precision, recall, and F1-Score as the dataset size increases. The Ablation model exhibits competitive performance and slightly superior results on the mid-sized dataset. However, it inevitably falls behind the CNN-LSTM model when trained on 10,000 samples. These findings imply that increasing the complexity of the CNN layer in the CNN-LSTM model improves its ability to collect significant features in bigger datasets, making it more successful for cyberbullying detection. 

Copyrights © 2024






Journal Info

Abbrev

juik

Publisher

Subject

Computer Science & IT

Description

Jurnal Ilmu Komputer (JUIK) Universitas Muhammadiyah Gorontalo. Jurnal ini dibuka dan dirilis pada tahun 2021 Volume 1. No. 1 untuk periode Februari dan Oktober. Jurnal ini memiliki ruang lingkup Ilmu Komputer, Teknik Informasi, Rekayasa Perangkat Lunak, Sistem Informasi Geografis, Data Mining, ...