Penelitian ini bertujuan untuk mengembangkan sistem pakar yang mampu mendiagnosa gangguan somatisasi menggunakan metode K-Nearest Neighbors (KNN). Gangguan somatisasi merupakan kondisi psikologis yang sulit didiagnosis karena gejalanya yang bersifat fisik namun berasal dari masalah psikologis. Ketidakjelasan gejala ini sering kali mengarah pada pemeriksaan medis yang tidak diperlukan dan mahal, menambah beban bagi pasien dan sistem kesehatan. KNN dipilih karena kemampuannya untuk melakukan klasifikasi dengan membandingkan data uji dengan data pelatihan berdasarkan kedekatan menggunakan Euclidean Distance. Euclidean Distance digunakan untuk mengukur jarak terpendek antara dua titik dalam ruang fitur, yang dihitung dengan mengakar kuadrat dari jumlah perbedaan kuadrat antara nilai-nilai fitur dari dua titik tersebut. Hasil penelitian menunjukkan bahwa sistem pakar yang dikembangkan memiliki akurasi yang tinggi, yaitu mencapai 92,5%, yang mengindikasikan bahwa metode KNN dengan Euclidean Distance efektif dalam mendiagnosa gangguan somatisasi. Faktor-faktor seperti pemilihan nilai K yang optimal dan normalisasi data berperan penting dalam keberhasilan sistem ini. Kontribusi signifikan dari penelitian ini adalah pembuktian bahwa KNN dapat diimplementasikan secara efektif dalam sistem pakar untuk mendukung tenaga medis dalam melakukan diagnosis gangguan somatisasi dengan akurasi yang tinggi dan keandalan yang baik.
                        
                        
                        
                        
                            
                                Copyrights © 2024