SITEKIN: Jurnal Sains, Teknologi dan Industri
Vol 22, No 1 (2024): December 2024

Prediction of Anime Rating with Hybrid Artificial Neural Networks and Convolutional Neural Networks

Al Kautsar, M. Nurudduja (Unknown)
Anggraini, Violita (Unknown)
Basirun, Arif Reza (Unknown)
Rifai, Achmad Pratama (Unknown)



Article Info

Publish Date
23 Dec 2024

Abstract

This study proposes an innovative approach to predict anime scores by leveraging a combination of Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN). Tabular data such as source, number of episodes, type, and genre are incorporated alongside the image representation of anime into a holistic model. Evaluation results on the test set show satisfactory performance, with an average loss value of 0.673, Mean Absolute Error (MAE) of 0.654, and Mean Absolute Percentage Error (MAPE) of 9.44%. Training and validation graphs reflect the model's convergence without significant signs of overfitting or underfitting. The integration of information from both data sources yields a model capable of providing accurate predictions of anime scores, contributing to an understanding of trends and preferences in the anime industry, and opening opportunities for the development of similar models in the field of score prediction or other quality evaluations.

Copyrights © 2024






Journal Info

Abbrev

sitekin

Publisher

Subject

Control & Systems Engineering Decision Sciences, Operations Research & Management Economics, Econometrics & Finance Industrial & Manufacturing Engineering Other

Description

Sesuai dengan standard ISO 45001 bahwa karyawan harus berpartisipasi dalam melakukan pencegahan kecelakaan. Untuk itu perusahaan telah menetapkan Program Hazob (Hazard Observation) untuk mengidentifikasi bahaya dan melakukan tindakan koreksinya. Penerapan Program Hazob masih dengan metode ...