Sinkron : Jurnal dan Penelitian Teknik Informatika
Vol. 9 No. 1 (2025): Research Article, January 2025

Performance Level Analysis On Learning Vector Quantization And Cohonen Algorithms

Pasaribu, Roni Fredy Halomoan (Unknown)
Zarlis, Muhammad (Unknown)
Nababan, Erna Budhiarti (Unknown)



Article Info

Publish Date
12 Jan 2025

Abstract

Biometric identification is an alternative for a security system that consists of physiological characteristics and behavioral characteristics. Physiological characteristics are relatively stable physical characteristics such as fingerprints, hand lines, facial features, tooth patterns, and the retina of the eye. Behavioral characteristics such as signature, speech patterns, or typing rhythm. The function of a signature is proof in a document which states that the party signing, knows and agrees to all the contents of a document. There are several stages in the signature pattern image recognition system, namely the signature pattern image is produced through a scanning process, then the resulting digital signature image is cut (scaling) manually, the next process is thresholding, edge detection, image division, and representation. input value. The method used in recognizing signature patterns is the learning vector quantization (LVQ) artificial neural network method and kohonen self-organizing map (SOM). In Learning vector quantization, the initial weights are updated using existing patterns. Meanwhile, in the self-organizing map method, Kohonen takes initial weights randomly, then these weights are updated until they can classify themselves into the desired number of classes. The processes that occur in the artificial neural network method require a relatively long time. This is influenced by the large number of data samples used as a means of updating the trained weights. From the results of the research conducted, it shows that the learning rate value that was built around 0.2 < α ≤ (10) ^ (-2) can produce better signature pattern recognition accuracy.

Copyrights © 2025






Journal Info

Abbrev

sinkron

Publisher

Subject

Computer Science & IT

Description

Scope of SinkrOns Scientific Discussion 1. Machine Learning 2. Cryptography 3. Steganography 4. Digital Image Processing 5. Networking 6. Security 7. Algorithm and Programming 8. Computer Vision 9. Troubleshooting 10. Internet and E-Commerce 11. Artificial Intelligence 12. Data Mining 13. Artificial ...