Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Vol 8 No 5 (2024): October 2024

Machine Learning Methods for Forecasting Intermittent Tin Ore Production

Rahmah, Nabila Dhia Alifa (Unknown)
Handoko, Budhi (Unknown)
Pravitasari, Anindya Apriliyanti (Unknown)



Article Info

Publish Date
14 Oct 2024

Abstract

Effective production forecasting is important for resource planning and management in the mining industry. Tin ore production from Cutter Section Dredges (CSD) may fluctuate due to a variety of factors, in which there are periods when the production is zero. This study compares various combinations of machine learning-based classification and forecasting to predict future tin ore production values, which have not been found in previous studies. The presence of zero values in the forecast in the next day's tin ore production forecast is addressed by combining classification and forecasting techniques. Random Forest and CatBoost classification techniques are used to determine the next day's CSD production operating status. Then, for each time point when the CSD is operational, a forecasting model is created using CatBoost and Bi-LSTM. This study's findings show that a serial combination of the Random Forest classification method and CatBoost forecasting can produce accurate tin ore production forecasts for the selected CSD (RMSE = 0.271, MAE = 0.179, MAE = 0.730, F1-score = 0,80). This study demonstrates how a serial combination of classification and forecasting models can improve the accuracy and efficiency of production forecasting for intermittent time series data.

Copyrights © 2024






Journal Info

Abbrev

RESTI

Publisher

Subject

Computer Science & IT Engineering

Description

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) dimaksudkan sebagai media kajian ilmiah hasil penelitian, pemikiran dan kajian analisis-kritis mengenai penelitian Rekayasa Sistem, Teknik Informatika/Teknologi Informasi, Manajemen Informatika dan Sistem Informasi. Sebagai bagian dari semangat ...