Automotive Experiences
Vol 7 No 3 (2024)

Crashworthiness Performance Study of 3D-Printed Multi-Cell Tubes Hybridized with Aluminum Under Axial Quasi-Static Testing

Ardiansyah, Riki (Unknown)
Indriani, Fitri Karina (Unknown)
Hidayat, Dony (Unknown)
Tjahjono, Arif (Unknown)
Nurrohmad, Abian (Unknown)
Marta, Aryandi (Unknown)



Article Info

Publish Date
14 Dec 2024

Abstract

This study investigates the crashworthiness performance of 3D-printed hybrid tubes, fabricated using PLA and PACF filaments with varying shell thicknesses (1, 1.5, and 2 mm). The hybrid tubes, composed of a shell, aluminum, and multi-cell structure, were subjected to axial quasi-static testing. Results indicate that both shell thickness and filament type significantly influence crashworthiness. PLA specimens with a shell thickness of 2 mm absorbed 504 J of energy, whereas PACF specimens with the same thickness absorbed only 342.9 J. The deformation mode analysis revealed mixed deformation patterns, including diamond, fracture, and fragmented modes. The study also evaluated specific energy absorption (SEA) and crushing force efficiency (CFE). The PLA specimen with a 2 mm shell thickness exhibited the highest SEA value of 18.61 J/g among all specimens. In contrast, the PACF specimen with the same shell thickness demonstrated the highest CFE value of 0.82 among the tested specimens. Overall, this research contributes insights into the design optimization of 3D-printed hybrid tubes for enhanced crashworthiness.

Copyrights © 2024






Journal Info

Abbrev

AutomotiveExperiences

Publisher

Subject

Aerospace Engineering Automotive Engineering Chemical Engineering, Chemistry & Bioengineering Control & Systems Engineering Electrical & Electronics Engineering Energy Materials Science & Nanotechnology Mechanical Engineering

Description

Automotive experiences invite researchers to contribute ideas on the main scope of Emerging automotive technology and environmental issues; Efficiency (fuel, thermal and mechanical); Vehicle safety and driving comfort; Automotive industry and supporting materials; Vehicle maintenance and technical ...