Jiko (Jurnal Informatika dan komputer)
Vol 7, No 2 (2024)

OPTIMIZING HADITH CLASSIFICATION WITH NEURAL NETWORKS: A STUDY ON BUKHARI AND MUSLIM TEXTS

Rasenda, Rasenda (Unknown)
Fabrianto, Luky (Unknown)
Faizah, Novianti Madhona (Unknown)



Article Info

Publish Date
30 Aug 2024

Abstract

The Bukhari and Muslim hadith collections encompass a total of 7008 hadith sentences, but it is not immediately clear which of these hadiths fall into the categories of prohibitions or orders. To enhance understanding and accessibility for readers, this study focuses on classifying these hadiths through a systematic process. The classification involves several key stages: Text Pre-processing, pre-processing the raw text data to clean and normalize (Stemming, Stopword Removal and Tokenization), Word vector features are extracted to capture the semantic relationships and contextual meanings of the words, then processed into a neural network model based on a multilayer perceptron (MLP) architecture (Model Architecture, Training and Optimization). The approach leverages the strength of neural networks, particularly through the use of multiple layers and feature extraction via word vectors, which significantly contributes to the accuracy of the classification process. The results of the study is very good, with a high accuracy rate of 97.72% achieved by employing a model with two layers and 256 neurons

Copyrights © 2024






Journal Info

Abbrev

jiko

Publisher

Subject

Computer Science & IT

Description

Jiko (Jurnal Informatika dan Komputer) Ternate adalah jurnal ilmiah diterbitkan oleh Program Studi Teknik Informatika Universitas Khairun sebagai wadah untuk publikasi atau menyebarluaskan hasil - hasil penelitian dan kajian analisis yang berkaitan dengan bidang Informatika, Ilmu Komputer, Teknologi ...