Javanese script is one of the traditional scripts in Indonesia used by the Javanese people. The Javanese script used in Javanese spelling basically consists of 20 main characters (nglegena), namely from the Ha to Nga script. Javanese script has very high value, the uniqueness of the script is one thing that must be preserved. However, widespread use of Javanese script has declined as technology has developed. In this context, one of the problems that arises is the difficulty in automatically recognizing and classifying the Javanese Nglegena script. Therefore, the use of computational methods to automatically classify the Nglegena Javanese script is very important. This research compares 2 methods for classifying Javanese Nglegena script, namely Complex-Valued Neural Network (CVNN) and Convolutional Neural Network (CNN). This research aims to compare the best accuracy between CVNN and CNN. In this study, the Complex-Valued Neural Network method had a higher average accuracy, namely 96.332% and a loss of 0.1834. Meanwhile, the CNN method has an average accuracy of 93.72% and a loss of 0.4254. Artificial intelligence-based Javanese Nglegena script classification technology can help people to recognize the Javanese Nglegena script, especially in the fields of education and culture.
                        
                        
                        
                        
                            
                                Copyrights © 2024