Sinergi
Vol 29, No 1 (2025)

Classification of palm oil fruit ripeness based on AlexNet deep Convolutional Neural Network

Kurniawan, Rudi (Unknown)
Samsuryadi, Samsuryadi (Unknown)
Mohamad, Fatma Susilawati (Unknown)
Wijaya, Harma Oktafia Lingga (Unknown)
Santoso, Budi (Unknown)



Article Info

Publish Date
04 Jan 2025

Abstract

The palm oil industry faces significant challenges in accurately classifying fruit ripeness, which is crucial for optimizing yield, quality, and profitability. Manual methods are slow and prone to errors, leading to inefficiencies and increased costs. Deep Learning, particularly the AlexNet architecture, has succeeded in image classification tasks and offers a promising solution. This study explores the implementation of AlexNet to improve the efficiency and accuracy of palm oil fruit maturity classification, thereby reducing costs and production time. We employed a dataset of 1500 images of palm oil fruits, meticulously categorized into three classes: raw, ripe, and rotten. The experimental setup involved training AlexNet and comparing its performance with a conventional Convolutional Neural Network (CNN). The results demonstrated that AlexNet significantly outperforms the traditional CNN, achieving a validation loss of 0.0261 and an accuracy of 0.9962, compared to the CNN's validation loss of 0.0377 and accuracy of 0.9925. Furthermore, AlexNet achieved superior precision, recall, and F-1 scores, each reaching 0.99, while the CNN scores were 0.98. These findings suggest that adopting AlexNet can enhance the palm oil industry's operational efficiency and product quality. The improved classification accuracy ensures that fruits are harvested at optimal ripeness, leading to better oil yield and quality. Reducing classification errors and manual labor can also lead to substantial cost savings and increased profitability. This study underscores the potential of advanced deep learning models like AlexNet in revolutionizing agricultural practices and improving industrial outcomes.

Copyrights © 2025






Journal Info

Abbrev

sinergi

Publisher

Subject

Civil Engineering, Building, Construction & Architecture Control & Systems Engineering Electrical & Electronics Engineering Engineering Industrial & Manufacturing Engineering

Description

SINERGI is a peer-reviewed international journal published three times a year in February, June, and October. The journal is published by Faculty of Engineering, Universitas Mercu Buana. Each publication contains articles comprising high quality theoretical and empirical original research papers, ...