Hepatitis C virus is the root cause of 78% of hepato-cellular carcinoma cases. Hepatocellular carcinoma (HCC) represents one of the primary causes of liver cancer mortality and incidence. Clinical prediction of HCC in patients suffering with hepatitis C virus infection (HCV) is challenging due to the diagnostic gold standard, liver biopsy, which is an invasive technique with several limitations. Artificial intelligence (AI) technology is being used in clinical research at a larger rate in recent years, and the field of HCC diagnosis is no exception. Several advanced and light-weight machine learning algorithms combined with less invasive blood tests have promising diagnostic potential to diagnose HCC from HCV. Deep learning algorithms are regarded as best methods for handling and processing complex, unstructured and raw data from various modalities, ranging from routine clinical variables i.e., from EMRs and laboratories to high-resolution medical images. This paper offers a thorough analysis of the most current research that has used machine learning and deep learning to diagnose, prognosticate, treat, and predict HCC risk in patients suffering with HCV.
Copyrights © 2025