Forest fires are still one of the most common problems in Indonesia. In fact, many of these forest fires origin from human activities, namely fires that are intentionally raised for a purpose such as widening the land to prepare for the planting season in the Nusa Tenggara Island. Forest fire events can be identified by observing hotspot data which are monitored through remote sensing satellites. Hotspot is an area that has a relatively higher surface temperature than the surrounding area based on certain temperature thresholds monitored by remote sensing satellites. The objective of this research is to cluster hotspots in the Nusa Tenggara and Bali Islands from year 2013 to 2018 using the K-Means Clustering Method with 28,519 hot spot data. By knowing this result, the ministry can use this data for patrol priority management. This research successfully clustered three types of hotspot classes based on the risk of fire with details as follow; High Risk Class contains 12,212 data with ranges of mean values of confidence in the range of 49.3–100%, brightness in the range of 305.1–421.3o K and FRP in the range of 2.5–714.3; Medium Risk contains 12,250 data mean values of confidence with a range of 20.3–74.3%, brightness in the range of 301.06–341.86o K and FRP in the range of 3.6–141.4; and Low Risk contains 4,057 data with a range of mean values of confidence in the range of 0–39.8%, brightness in the range of 300–365.86oK and FRP in the range of 3.5–275.6.
Copyrights © 2022