JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH)
Vol 6 No 1 (2024): Oktober 2024

Optimasi Algoritma K-Nearest Neighbors Menggunakan Teknik Bayesian Optimization Untuk Klasifikasi Diabetes

Sowabi, Nur Kholis (Unknown)
Widiastuti, Nur Aeni (Unknown)
Maori, Nadia Annisa (Unknown)



Article Info

Publish Date
19 Oct 2024

Abstract

Diabetes is one of the chronic diseases that affects millions of people worldwide. Early diagnosis is crucial to prevent long-term complications, but the main challenges lie in the complexity of medical data and selecting optimal parameters for classification algorithms. This research aims to optimize the K-Nearest Neighbors (KNN) algorithm using Bayesian Optimization to improve accuracy in diabetes classification. The dataset used is the "Early-stage Diabetes Risk Prediction" from the UCI Machine Learning Repository, preprocessed through normalization and categorical feature encoding. Bayesian Optimization was applied to find the optimal parameters, such as the number of neighbors (k) and the best distance metric. The results show that the optimized KNN achieved 91.34% accuracy, 100% precision, and a 93.23% F1-Score, demonstrating a significant improvement over the standard KNN model. In conclusion, KNN optimization with Bayesian Optimization proves effective in enhancing diabetes classification performance and can contribute significantly to early detection and disease management.

Copyrights © 2024






Journal Info

Abbrev

josh

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management

Description

Artikel yang dimuat melalui proses Blind Review oleh Jurnal JOSH, dengan mempertimbangkan antara lain: terpenuhinya persyaratan baku publikasi jurnal, metodologi riset yang digunakan, dan signifikansi kontribusi hasil riset terhadap pengembangan keilmuan bidang teknologi dan informasi. Fokus Journal ...