This study aims to analyze the application of C5.0 and K-Nearest Neighbor (K-NN) algorithms in the classification process for determining the optimal location for housing. The classification process involves several factors such as land price, accessibility, public facilities, crime rate, infrastructure, land availability, and consumer preferences. The research conducted tests on both algorithms to compare their performance in generating accurate predictions. The results show that the C5.0 algorithm outperforms K-NN, achieving an accuracy rate of 100%, compared to K-NN, which achieved an accuracy of 66.67%. This demonstrates that C5.0 is more effective in modeling data and producing more precise classifications. Therefore, it can be concluded that the use of data mining algorithms, particularly C5.0, greatly assists in the classification process for determining housing locations, providing more optimal results compared to K-NN.
Copyrights © 2025