Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer
Vol. 8 No. 2 (2024)

Radial Basis Function Model for Obesity Classification Based on Lifestyle and Physical Condition

Razak, Farhan Radhiansyah (Unknown)
Biddinika, Muhammad Kunta (Unknown)
Yuliansyah, Herman (Unknown)



Article Info

Publish Date
27 Dec 2024

Abstract

Obesity is a chronic condition affecting millions worldwide, influenced by genetic predispositions, environmental factors, lifestyle habits, and excessive caloric intake surpassing energy expenditure. widespread prevalence, existing studies lack a comprehensive exploration of classification models that effectively address the complex interplay between lifestyle and physical attributes. This study tackles the absence of an optimal machine learning model for accurately classifying obesity based on these multifaceted factors. To address this gap, the study evaluates the performance of three machine learning algorithms: Support Vector Machine (SVM) with a Radial Basis Function (RBF) kernel, Naïve Bayes, and K-Nearest Neighbor (KNN). The primary objectives are to identify the most accurate classification approach, analyze the strengths of these algorithms, and highlight the importance of lifestyle and physical attributes in obesity prediction. Experimental findings show that SVM with RBF kernel achieves the highest accuracy at 89%, surpassing the performance of the other models. This study advances the field of obesity classification by offering a detailed comparative analysis of machine learning algorithms and underscoring the critical role of integrating lifestyle and physical factors into predictive modeling.

Copyrights © 2024






Journal Info

Abbrev

eltikom

Publisher

Subject

Aerospace Engineering Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering

Description

We are the Editor of Jurnal ELTIKOM, invites Mr. / Ms Lecturer, researcher and practitioner to be able to publish your paper on topics covering Electrical Engineering, Electronics Engineering, Telecommunications Engineering, Computer Engineering, Information ...