Indonesian Journal of Data and Science
Vol. 5 No. 3 (2024): Indonesian Journal of Data and Science

Classification of Mushroom Edibility Using K-Nearest Neighbors: A Machine Learning Approach

Admojo, Fadhila Tangguh (Unknown)
Radhitya, Made Leo (Unknown)
Zein, Hamada (Unknown)
Naswin, Ahmad (Unknown)



Article Info

Publish Date
31 Dec 2024

Abstract

This study investigates the use of the K-Nearest Neighbors (KNN) algorithm for the binary classification of mushroom edibility using a cleaned version of the UCI Mushroom Dataset. The dataset underwent pre-processing techniques such as modal imputation, one-hot encoding, z-score normalization, and feature selection to ensure data quality. The model was trained on 80% of the dataset and evaluated on the remaining 20%, achieving an overall accuracy of 99%. Evaluation metrics, including precision, recall, and F1-score, confirmed the model's effectiveness in distinguishing between edible and poisonous mushrooms, with minimal misclassification errors. Despite its high performance, the study identified scalability as a limitation due to the computational complexity of KNN, suggesting that future research should explore alternative algorithms for enhanced efficiency. This research underscores the importance of pre-processing and hyperparameter optimization in building reliable classification models for food safety applications.

Copyrights © 2024






Journal Info

Abbrev

ijodas

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Mathematics

Description

IJODAS provides online media to publish scientific articles from research in the field of Data Science, Data Mining, Data Communication, Data Security and Data ...