Indonesian Journal of Artificial Intelligence and Data Mining
Vol 7, No 2 (2024): September 2024

A Hybrid CNN-RNN Model for Enhanced Anemia Diagnosis: A Comparative Study of Machine Learning and Deep Learning Techniques

Airlangga, Gregorius (Unknown)



Article Info

Publish Date
23 May 2024

Abstract

This study proposes a hybrid Convolutional Neural Network-Recurrent Neural Network (CNN-RNN) model for the accurate diagnosis of anemia types, leveraging the strengths of both architectures in capturing spatial and temporal patterns in Complete Blood Count (CBC) data. The research involves the development and evaluation of various models of single-architecture deep learning (DL) models, specifically Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Fully Convolutional Network (FCN). The models are trained and validated using stratified k-fold cross-validation to ensure robust performance. Key metrics such as test accuracy are utilized to provide a comprehensive assessment of each model's performance. The hybrid CNN-RNN model achieved the highest test accuracy of 90.27%, surpassing the CNN (89.88%), FCN (85.60%), MLP (79.77%), and RNN (73.54%) models. The hybrid model also demonstrated superior performance in cross-validation, with an accuracy of 87.31% ± 1.77%. Comparative analysis highlights the hybrid model's advantages over single-architecture DL models, particularly in handling imbalanced data and providing reliable classifications across all anemia types. The results underscore the potential of advanced DL architectures in medical diagnostics and suggest pathways for further refinements, such as incorporating attention mechanisms or additional feature engineering, to enhance model performance. This study contributes to the growing body of knowledge on AI-driven medical diagnostics and presents a viable tool for clinical decision support in anemia diagnosis

Copyrights © 2024






Journal Info

Abbrev

IJAIDM

Publisher

Subject

Computer Science & IT

Description

Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM) is an electronic periodical publication published by Puzzle Research Data Technology (Predatech) Faculty of Science and Technology UIN Sultan Syarif Kasim Riau, Indonesia. IJAIDM provides online media to publish scientific ...