Indonesian Journal of Artificial Intelligence and Data Mining
Vol 7, No 2 (2024): September 2024

Machine Learning Approach for Early Diagnosis of Dyslexia Among Primary School Children: A Scoping Review and Model Development

Kurniawan, Zaqi (Unknown)
Tiaharyadini, Rizka (Unknown)



Article Info

Publish Date
20 Jul 2024

Abstract

Dyslexia, a prevalent learning disorder among primary school children, often goes undetected until later stages, hindering academic progress and socio-emotional development. Early diagnosis is crucial for effective intervention. Machine Learning (ML) offers promise in developing accurate diagnostic tools. However, there's a scarcity of comprehensive reviews focusing on ML approaches for dyslexia diagnosis in this demographic. In this scoping review, we consolidate existing literature and present the development of a novel ML model that was customized for early dyslexia diagnosis. Utilizing Decision Tree, K-Nearest Neighbors (KNN), Logistic Regression, Naive Bayes, and Random Forest. The comparative analysis of ML methods for dyslexia detection in elementary school children reveals distinct strengths. Decision Tree shows robust precision: 92.31% for dyslexia-prone, 90.62% for diagnosed dyslexia, and 86.67% for no dyslexia detected, with corresponding high recall values of 90.57%, 87.88%, and 100%, respectively. KNN excels with an overall accuracy of 94.00% and perfect precision for undetected dyslexia (100%), with high precision and recall for dyslexia-prone and diagnosed dyslexia. Logistic Regression highlights significant predictors and achieves precision of 95.38% for dyslexia-prone and 88.24% for diagnosed dyslexia, with recall rates of 93.34% and 90.91%, respectively. Naive Bayes exhibits outstanding precision for no dyslexia and dyslexia-prone categories (100%), with slightly lower precision for diagnosed dyslexia (82.5%), but perfect recall for undetected and diagnosed dyslexia. Random Forest demonstrates balanced performance with precision ranging from 91.18% to 94.23% and recall from 92.31% to 93.94%, achieving an overall accuracy of 93.00%. These results underscore ML's potential in enabling early dyslexia detection, facilitating timely interventions to improve outcomes for affected children and advancing dyslexia diagnosis.

Copyrights © 2024






Journal Info

Abbrev

IJAIDM

Publisher

Subject

Computer Science & IT

Description

Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM) is an electronic periodical publication published by Puzzle Research Data Technology (Predatech) Faculty of Science and Technology UIN Sultan Syarif Kasim Riau, Indonesia. IJAIDM provides online media to publish scientific ...